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evant parameters is the same, but the flow arrangement is 
different in each case. For the cocurrent flow arrangement 
(Pl) the temperature cross is between fluids 2 and 3. In the ‘. 
case of the countercurrent flow arrangement the temperature 
cross does not exist, while for both countercurrent-cocurrent 2. 

(P3) and cocurrent-countercurrent (P4) flow arrangements 
temperature crosses (both direct and indirect) exist. In order 
to determine the existence of the temperature cross without 3. 

analysing the temperature distributions within a heat 
exchanger. one can use equation (8). It is worth noting that 
the calculation should include double precision. 4. 

5. 

CONCLUDING REMARK 6. 

A compact solution was obtained for the temperature 7 
distribution and temperature cross of a three-fluid heat 
exchanger with two thermal communications among the 
thermally unbalanced fluid streams. The analysis was con- *, 
ducted for any of four possible fluid flow arrangements. 
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1. INTRODUCTION 

TKANSPOKT processes through porous media is a subject that 
has been widely studied in the scientific commumty during 
the last two decades. This interest is justified by the important 
role it plays in the industrial sector. particularly in the insu- 
lating systems for buildings and heat exchanger devices. 
energy storage systems, material processing and geothermal 
systems. An excellent review on this subject was recently 
provided by Nield and Bejan [I]. 

Studies of convective heat transfer from an isothermal 
sphere embedded in a porous medium are important in many 
engineering and geophysical applications such as spherical 
storage tanks. packed beds of spherical bodies, solidification 
of a magma chamber and others. However. only a little work 
has been devoted to this problem in the past. An early paper 
by Yamamoto [2] presents an analytical solution for small 
Rayleigh numbers. This paper has recently been extended by 
Sano and Okihara [3] to the case of an unsteady convective 
flow. But boundary-layer solution (large Rayleigh numbers) 
of natural convection about a general axisymmetric heated 

body embedded in a porous medium have been presented by 
several authors. notablv Merkin 141. Nilson 151 and Nakav- 
ama and Koyama [6]. In particular,>Cheng [7] and Chen and 
Chen [8] have treated the case of a sphere. it was shown in 
[7] that this problem admits a similarity solution. Further, a 
systematic analysis of the problem of natural convection 
from an isothermal sphere immersed in a fluid-saturated 
porous medium has been presented by Pop and lngham 
[9]. In addition to obtaining a second-order boundary-layer 
solution they used a finite-difference scheme to obtam 
numerical results for small values of the Rayleigh numbers. 
as well. 

However. to the authors’ knowledge the conjugation fea- 
tures of this problem have never been analysed. It is impor- 
tant to mention that conjugate heat transfer problems. in 
which the convective heat transfer depends strongly on the 
thermal boundary conditions, are important in many heat 
transfer equipments because this dependence usually degrd- 
dates the heat exchanger performance. Hence, the present 
problem might have some relevance to understanding of a 
charging or discharging process of energy in regenerative 
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NOMENCLATURE 

N radius of the sphere AT applied temperature difference. T,- T,. 
(1‘ radius of the core region 
g acceteratton due to gravity 
k thermal conductivity ration, k,ik, 
k, effective thermal conductivity of the porous 

Greek symbols 

medium 
thermal diffusivity 

k, thermal conductivity of the solid sphere 
; coefficient of thermal expanston 
6 

K permeability of the porous medium 
boundary-layer thickness 

H 
/I4 a total number of grid points in the radial 

dimensionless temperature. (T,,- T, ) AT 

direction 
A0 temperature increment 
I’ 

N a total number of grid points in the angular 
kinematic viscostty 

0 
_ direction 

dimensionless conlugate parameter. equation 

Nu average Nusselt number based on AT 
(IS) 

d, angular coordinate 
.Vu* average Nusselt number based on Th- T, li/ dimenstonless streamfunctton 
(1” heat flux per unit area Ai streamline increment. 
c/” average heat flux per unit area 
I dimensionless radial coordinate, r’ LI 
R radius ratio. u,!(I 
Ro Rayleigh number for porous medium based on 

Subscripts 

AT, gpATKu!n 
b boundary temperature 
f 

RP Rayleigh number for porous medium based 
variables tn the fluid-porous medium 

5 
on Th- T,., g[j(z- T,)Ku/rv 

variables in the solid sphere 
ii nodal points. 

T temperature 

T, average temperature at the surface of the sphere 
T, temperature in the convective flutd Super5cripts 
T, temperature in the solid sphere ’ dimensional variables 
T,, T, temperatures (constant) of the core region - average quantities 

and ambient fluid, respectively II iteration order. 

porous bodies. On the other hand, it is worth pointing out 
that spherical shapes of canisters have been proposed for 
nuclear waste disposal in subseabeds. 

The present paper is therefore concerned with the problem 
of conjugate natural convection about a sphere of thermal 
conductivity k,. which is imbedded in a fluid-saturated 
porous medium of thermal conductivity k, and of constant 
temperature T,. It is assumed that the sphere has a heated 
core region of a uniform temperature T,, where T, > T,. 
Heat moves through the sphere by two-dimensional con- 
duction and is transferred from the solidPporous matrix 
Interface by natural convection to the ambient fluid-porous 
medium. Based on the full two-dimensional analysis, we are 
able to obtain accurate finite-difference solutions over the 
wide ranges of the parameters entering the problem. In 
addition, very simple but accurate asymptotic formulae were 
obtained for the average boundary temperature, and local 
and average Nusselt numbers when the Rayleigh number is 
very small (Rrr+ 0) and very large (Ra >> 1) in terms of 
the proper dimensionless variables. This is because, for the 
convenience of engineering applications. simple analytical 
and correlation equations are first preferable. A single dimen- 
sionless parameter. similar to the Biot number. is proposed. 
with which all the numerical results are nicely correlated. 

2. BASIC EQUATIONS 

Consider the problem of a steady natural convection from 
a sphere of radius n embedded in a fluid-saturated porous 
medium of uniform temperature T, The sphere has a heated 
core region of radius a, with a, < ~1, and a uniform tem- 
perature T,, where T, > T,.. Both the fluid motion and tem- 
perature fields are axially symmetric and hence independent 
of the azimuthal coordinate. As a result, the physical system 
to be analysed here may be represented by the simple 

geometry shown in Fig. I, where 4 is measured clockwrse 
from the vertically up position. Consideration will be then 
confined to the range 0 < r+$ < rt only. In terms of dimen- 
sionless variables, the problem is described by the following 
equations : 

for the flurd-porous medium part [9] : 

. . . 
. .I* . 

I 
FIG. I. A schematic diagram of physical model and coor- 

dinate system. 
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for the solid part : 

cosg ?fl, - m.+*--+f-$0, 
).I WJ 

where : 

(4) 

Equations (I)- (3) are to be solved with respect to the fol- 
lowing boundary conditions : at the fluid-solid interface : 

withtn the core region : 

0, = I at r = R; 

far away from the sphere : 

l+b=o (I,=0 asr+x; 

symmetric conditions : 

The average Nusselt number can be expressed as [9] : 

sin C$ dd. 
,=I 

3. ANALYTICAL SOLUTIONS 

(5b) 

(5c) 

(5d) 

(6) 

The next step is to solve equations (l)-(3) subject to the 
boundary conditions (5). As already mentioned, we shall first 
present approximate analytical solutions of these equations, 
which are based on our recent work on conjugate natural 
convection problems [I I, 121. 

3. I. F/ON at IOW Rqleigh numbet 
When the Rayleigh number is small (Ru + 0), the solutions 

can be assumed a series expansion in powers of Rtr : 

($.fh,O,) = (II/“~n:,sr)+(~‘,e,‘,H!)Rrr+..... (7) 

Working from the leading order terms (conduction solutton) 
and imposing the boundary conditions (5a)-(5d), we obtain 
the following solutions of flow and temperature fields : 

(X) 

fj” = 
kR I 

’ (k-l)R+l I-, 

For practtcal considerattons. it is convenient to Introduce 
the dimensionless average boundary temperature 
0, = (T,- T,);AT. where T,, is the average temperature dis- 
tribution at the surface of the sphere and is defined as : 

- s 
T, =i ‘T,(r’,&, .-,,sindd4. 

0 
(IO) 

Thus from (9a). in the limit of Ra + 0. we get : 

e,= 
kR 

(k- l)R+ I 

3.2. FIoM. at iurge Rayleigh number 
In order to obtain analytical boundary-layer solutions for 

this problem, we use the fact that at the solid&Iuid interface 
(I’ = ~1) the heat fluxes from the solid part and through the 
boundary-layer are equal. Within a strictly one-dimensional 
analysis. this leads to : 

q” = k,(T,-rT,) k T,-T,. 
17’ (12) 

where ci - u:Nu = 1.9516uRrr ” is the thickness of the 
boundary-layer near the sphere. Here the average Nusselt 
number % = 0.5124Ra’ ’ is taken from Pop and Ingham 
[9]. Thus, from (12). we obtain the following approximate 
solution for the dimensionless average boundary tem- 
perature : 

H,= 
1.956lkR 

1.956lkR+(I-R)Ru”’ 
(13) 

or: 

(14) 

where c is the Biot number like parameter. which is given 
for the present problem by : 

Ro’ ‘/1.9516k (15) 

Since a similar non-dimensional parameter arises for all the 
convection-conduction conjugate heat transfer problems, it 
would be convenient to call this dimensionless constant con- 
jugute modulus. This is essentially the same parameter called 
wall thickness parameter by Bejan and Anderson [l7]. 

It should be, however, noted that, in a strict sense, the 
Rayleigh number in equation (I 3) is not the one which actu- 
ally drives the flow. Following the argument suggested by 
Vynnycky and Kimura [IO], we define the Rayleigh number 
Ra* based on (Ts- T,); the real temperature difference that 
drives the flow, i.e. RCJ* = gBK(T,- T,)/rv = &Au. Thus, 
using again equation (I 2). we have : 

R&’ ? 1 (16) 

which. after some algebra, reduces to : 

r$2+K-I =o. (17) 

This is a cubic equation of O’, ‘, and it has only one real root 
in a range between 0 and I The physically relevant root of 
this equation is given in ref. [IO]. 

Further. we note that the average heat flux through the 
boundary-layer can be expressed as : 

4; =;(Th-T,)Nu =0.5124+T,)R~+ 
k,- -3 

(18) 

where Nu* is the average Nusselt number based on (T,, - T, ). 
which isgiven by Nu* = O.S124Ru* ‘. Therefore. the over-all 
average Nusselt number through the solid and the boundary- 
layer : 

-;i 
NM = ST. 

I 
(19) 

can be derived from the average heat flux expression as gtven 
by equation (IX) and the average boundary temperature 
equations (I 3) or (I 7). The end result is : 

Nu = 0.51248; ‘Rn’ ‘. (20) 
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Finally. if we eliminate Rn between (15) and (20). one Table I. Comparison of numerical results with the boundary- 
gets : layer calculations (k -+ I-) 

(21) 

indicating that the average Nusselt number is also correlated 
by a single parameter o. 

4. NUMERICAL COMPUTATION 

The method chosen for the numerical solution of the gov- 
erning partial differential equations (l)-(3) subject to the 
boundary conditions (5) was solved by the finite-ditrerences 
and coordinate transformation grid network as described by 
Kiiblbeck el al. [ 131. The grid net work due to coordinate 
transformation has some advantage over intuitive grid gen- 
eration. This method produces a smooth stretch of grid 
spaces from fine grids near the sphere surface to coarse ones 
in the far field. This is particularly convenient when the far 

Nu 
Boundary-layer theory Present results with 

RU (Pop and In&ham [9]) 31 X54 

40 3.2407 3.6093 
100 5. I240 5.3752 
200 7.2464 7.2320 

._______~ 

field boundary conditions are involved. The advection terms 
in the energy equation are discretized by a second-order 
upwind-type approximation. The total number of the nodal 
points varied from 31 x 60 (31 in the angular direction and 
60 in the radial direction) to 41 x90 depending upon the 
parameters R and Ru. In Table I we show the values of 

FIG. 2. Streamlines and isotherms for RN = 400 and R = 0.5 : (a) k = I. AI/I = 3.6X x IO ‘. A0 = 0.05 : and 
(b) k = IO. A$ = 6.74 x IO ‘. A0 = 0.05. 
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Numerical 

-Q-W) ok=10 
Ak= 3 
ok= 1 

. 

Ra Ra 

i 
10: 

IO2 f . . . . . . . . . . . . . . 

FIG. 3. Variation of the dimensionless average boundary FIG. 5. Variation of the average Nusselt number with large 
temperature with small values of Rn for R = 0.5. values of Ro for R = 0.5. 

average Nusselt number for k -+ TC and the boundary-layer 
approximation. It is seen that as Ra increases the numerical 
Nusselt numbers approach the values predicted by the 
boundary-layer approximation. The size of the com- 
putational domain is taken as roughly 5-10 times the sphere 
radius. With the open boundary conditions this proves large 
enough to produce the size-independent results, except for 
very low Rayleigh numbers, where the thermal diffusion 
from the sphere penetrates far deeper than the cases of high 
Rayleigh numbers. The convergence of the numerical results 
is established locally based on the criterion, for instance : 

where the superscript n denotes the iteration order. For other 
physical quantities the same criterion is employed. 

The dimensionless parameters in the present study are the 
Rayleigh number Ra, the thermal conductivity ratio k. radius 
ratio R and the conjugate modulus rr. The values of these 
parameters are Ra = 0. I. I, IO, 40, 100, 200. 400 and 1000 ; 
k = 0.5, I, 3 and IO; R = 0.5; D = 0.1, I, IO and 100. 

5. RESULTS AND DISCUSSION 

Typical computed results for streamlines and isotherms 
are displayed in Fig. 2 for Ra = 400 ; k = I and IO ; R = 0.5. 
Each curve in the plots on the left-hand side represents an 
isotherm line while each curve on the right-hand side rep- 
resents a streamline. It is seen that the boundary-layer 

1.5 , . . . . . . , 1 

1.0 - 

sb ’ 
0.5 - 

102 

Ra 
4. Variation of the dimensionless average boundar) 
temperature with large values of Rrr for R = 0.5. 

becomes thinner with increasing k. As is expected, evidence 
of plume development is found near the top surface of the 
sphere. 

Next. variation of the dimensionless average boundary 
temperature and average Nusselt number with Ra is shown 
in Figs. 3--5. The analytical solutions (I I), (13). and (20) 
have also been included for reference. It is noticed that very 
good agreement exists between these analytical solutions and 
fully two-dimensional numerical results in this problem. Fur- 
ther we see that 0, and Nu are substantially influenced by 
the conjugate parameter k; they increase as k increased. 
However, as Fig. 3 shows, 0, remains constant for small 
values of Ra, i.e. curves are linear and flat. In particular, they 
become close to one for large values of k( - IO). It suggests 
that the boundary and the core temperatures are nearly 
equal. On the other hand, for comparatively smaller values 
of k these temperatures become unequal. 

Results from equations (l4), (I 7) and (21) are finally pre- 
sented together withthe numerical ones. In Fig. 6. showing 
the comparison of Oh for both analytical equations (14) and 
(I 7). we conclude that the agreement between these two- 
model equations is good, particularly for small values of 
the parameter 6. A very good agreement between analytical 
predictions and numerical ones is also seen over a wide rage 
of r~ in Fig. 7. It suggests that the present conjugate problem 
depends only on the single parameter rr, i.e. the Biot number 
like parameter and may be termed as conjugutc, n~o~uulus in 
the present paper. It should be recalled that the con+gcr/~ 
nmiu/u.s may take slightly different forms depending upon 
the geometries involved (for example. see Vynnycky and 
Kimura [14], Bejan and Anderson [15]). Nonetheless, no 
doubt. this greatly simplifies the study of this otherwise com- 
plicated heat transfer model. 

0.6 

0.6 

0.2 

Variation of the dimensionless average boundary 
temperature with 0. 

FIG. F~ti. 6. 
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FIG. 7. Variation of: (a) the dimensionless average boundary 
temperature; and (b) the expression z(l/R- l)/k$i ’ with 
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